DOE – BATTERY 500 REVIEW - 2018

Status and Challenges of Electrode Materials for High Energy Cells

Presented by

M. Stanley Whittingham

Dinch and an University

Binghamton University

2018 DOE Vehicle Technologies Program Review June 21st, 2018

Project ID # bat359

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

Timeline

- Project start date: 10-01-2016
- Project end date: 9-30-2021
- Percent complete: 30%

Budget

- Total project funding
 - DOE \$50M
 - Contractor share: Personnel
- Funding received
 - FY17: \$10M
 - FY18: \$10M

Barriers

- Barriers addressed
 - High energy density of 500 Wh/kg
 - Abuse-tolerant safer electrodes
 - Energy vs Safety
 - Cycle life

Partners

- Project Lead
 - PNNL
- National Laboratories
 - PNNL, INL, Brookhaven
- Academia
 - UC San Diego, U. Washington, U. Texas

RELEVANCE

Overall Battery 500 Objective

 Develop commercially viable Li battery technologies with a cell level specific energy of 500 Wh/kg through innovative electrode and cell designs that enable utilization of maximum capacity of advanced electrode materials

Chemistry

- Utilize a Li metal anode combined with a compatible electrolyte system, and either
 - A nickel-rich NMC or S

Keystone project (1): Materials and Interfaces

- Provides the materials and chemistry support for Keystone projects
 - (2) Electrode Architecture, and
 - (3) Cell Design and Integration

MILESTONES: KEYSTONE 1 and BINGHAMTON

End date	9/30/2017	12/31/2017	03/31/2018	06/30/2018	09/30/2018	
Type	Quarterly Q4	Quarterly Q1	Quarterly Q2	Quarterly Q3	Quarterly Q4	
Keystone Project 1 Materials Interfaces	Battery500 Annual: Demonstrate 1 Ah pouch cell with 300 Wh/kg energy density, and over 50 cycles Completed	Scale up the synthesis capacity of high Ni content NMC to 500 g Completed	Establish the stage II baseline coin cell performances using commercial high-Ni NMC at high loading in cathode, lean electrolyte and thin Li metal film anode (with the N/P ratio of ca. 2) Completed	Establish the new high-Ni NMC baseline material (Ni > 70%) and coin cell performance using the materials synthesized by the team and supplied by other sources Ongoing	Increase the cycle life of Li/high-Ni NMC cells using the materials synthesized by the team to 100 cycles (stage II coin cell protocol); Test new electrolyte Ongoing	
Binghamton	Determine impact of cathode loading on capacity Completed	Provide the key electro-chemical data for the 622 and 811 NMC materials Completed	Recommend with Keystone 1 team the preferred NMC composition where Ni≥0.7, based on experimental and modeling studies Completed	Determine attributes of 811 vs NCA Ongoing	Develop a range of current collector options that will reduce their overall weight Ongoing	

CHALLENGES OF HIGH NICKEL LIMO₂

- Ni content drives the energy up, but
 - Thermal stability decreases
 - Capacity retention decreases

Noh et al, J. Power Sources, 233 (2013) 121-130.

CHALLENGES OF HIGH NICKEL LIMO₂

- Ni content drives the energy up, but
 - Thermal stability decreases
 - Capacity retention decreases

Noh et al, J. Power Sources, 233 (2013) 121-130.

- Impact of Al on thermal stability
 - NCA low stability at 4.6 V
 - LiMn-rich stabilized by 5% Al

 $\text{Li}_{1.2}\text{Ni}_{0.16}\text{Mn}_{0.56}\text{Co}_{0.08-y}\text{Al}_{y}\text{O}_{2}$

BATT: Whittingham et al, JECS, 159, A116 (2012)

KEYSTONE 1 APPROACH (to expedite progress)

- Obtain commercial NMC materials as baseline NMC cathodes
 - 622 and 811 obtained indirectly from South Korea supplier (BU/UCSD)
 - NCA obtained from various sources (BU/UCSD)
 - Utilize knowledge from DOE NECCES study on model compound NCA (BU/UCSD)
- Evaluate NMC compositions, and make recommendations for future studies
 - Use **622** as baseline, against which materials will be compared
 - Use for consortium studies in initial years
 - Use to meet Year 1 full cell milestone
 - Make recommendation for future composition
- Build synthesis capability within the consortium (*U Texas*)
 - Characterize
 - Supply the consortium

BATTERY500 CONSORTIUM CHOSE HIGH Ni NMC

- LiNi_{0.6}Mn_{0.2}Co_{0.2}O₂ is **baseline** for the consortium
 - X-ray characterization normal and
 - less than 3% Ni/Li mixing
 - Morphology good
 - Electrochemistry acceptable

MILESTONE: 2017 YEAR END GOAL ACHIEVED

- 300 Wh/kg Li/NMC622 pouch cell with >100 stable cycles has been demonstrated. (project #: bat369)
- 313 Wh/kg Li-S pouch cell has been demonstrated but cycling is challenging. (project#: bat361)

APPROACH: QUESTIONS TO BE ADDRESSED AND ACCOMPLISHMENTS

Evaluate Commercially available High Ni NMC:

- Understand 622 and 811 materials.
 - Structure, electrochemistry, morphology, ordering etc.
- Synthesize materials in-house:
 - Primary/secondary particle size, morphology, size distribution
- Address several key challenges:
 - What is the optimum composition, including Li content?
 - Are 622 and 811 truly single phase for all x values, Li_xNMC?
 - What is fundamentally different between 811 and NCA?
 - What is the role of Al; bulk vs surface?
 - BASF says 811 must be doped and coated; Umicore says not stable longterm
 - What are the degradation mechanisms for 622 and 811?
 - Extend from know-how on 333, 442, 532 and NCA
 - Can coatings ameliorate?
 - Are gradient materials technically and cost effective?
 - What is the optimum material/morphology for thick electrodes?
- Advanced characterization are critical

NMC 622 CAN ACCOMMODATE RANGE OF Li

- $\text{Li}_{1+y}[\text{Ni}_{0.6}\text{Mn}_{0.2}\text{Co}_{0.2}]_{1-y}\text{O}_2$ can accommodate wide range of lithium
 - Highest capacity obtained for Li:M = 1:1
- 811 much less tolerant (impurity phases formed when $[Li] \neq [M]$)

Table 1: Summery of the XRD refinement and magnetic property results for $Li_{1+y}(622)_{1-y}O_2$.

Li content	a, Å	c, Å	c/3a	Li/Ni mixing	C(emu K/mol)	Θ (Κ)	µехр, µВ	μtheor, μΒ
Li _{0.89} M _{1.11} O ₂	2.878	14.242	1.650	8 %	0.54	-62	2.71	2.74
$Li_{0.95}M_{1.05}O_2$	2.871	14.221	1.651	4 %	0.675	-43	2.49	2.57
LiMO ₂	2.863	14.199	1.653	2 %	0.72	-39	2.46	2.41
Li _{1.05} M _{0.95} O ₂	2.857	14.188	1.655	-	0.65	-27	2.37	2.24
Li _{1.09} M _{0.91} O ₂	2.83	14.177	1.657	-	0.67	-32	2.15	2.15

EFFECT OF LOADING ON RATE CAPABILITY:

811 > 622 (BU 1 MILESTONES 2018 Q1 & Q2)

RATE CAPABILITY OF NCA, NMC 811 and 622

- 811 shows highest capacity
- 811 and 622 show better capacity retention than NCA
- NCA shows highest rate capability

LEARNINGS FROM NECCES NCA STUDY

Aluminum

- Evenly distributed in bulk of material
 - No surface enrichment
- Al minimizes formation of O1 phase at high voltages
 - Single solid solution up to 5 V
 - Stabilizes structure, should reduce degradation
- Learning: Al desirable for high Ni cathodes

Air Instability of NCA

- In moist air, a LiHCO₃ film is formed on the surface
 - Very detrimental to cycling capacity
- In dry air, a Li₂CO₃ film is formed on the surface
 - Decomposed at high charging voltages
- Learning: high Ni must be protected from air

Extended cycling leads to cracking of particles

- Mechanical stress needs minimizing
 - Keep lattice expansion to a minimum
 - Ni: $6 \Delta c = 2.6\%$; 8 = 3.7%; 9 = 5.6% (charging to 4.5 V)
- Learning: Possibly limit Ni to ≤ 0.8

Li content Radin et al AEM 2017

Amatucci et al, JECS, 164 (2017) A3727

BASELINE 622 vs 811 (cf NCA): PROS AND CONS

> 622:

- + Higher thermal stability
- + Lower cost than 333

> 811:

- + Higher rate capability
- + More tolerant of high loadings
- ? Does it gas like NCA?
- Instability in air
- Higher then 0.8 Ni leads to larger lattice expansion, then degradation issues

> NCA

- + Highest rate capability
- Most studied
- Maybe gassing issue, so needs hard case
- Unstable in moist air

BU and KEYSTONE 1 MILESTONE 2018 Q2

Milestone

 Recommend with Keystone 1 team the preferred NMC composition where Ni≥0.7, based on experimental and modeling studies

• Recommendation: NMC 811 as 2018/2019 Battery 500 Cathode, as

- NMC 811 has higher capacity for a given charging voltage
- NMC 811 has higher power capability
- NMC 811 maintains capacity at high loadings better than 622
- NMC 811 is lower cost/kWh, because of less cobalt and higher ED

 $\text{Li}_{1.0}\text{Ni}_{\geq 0.8}[\text{Mn, Co, Al}]_{\leq 0.2}\text{O}_2$

SCALED-UP SYNTHESIS OF HIGH-NICKEL NMC

KEYSTONE 1 MILESTONE 2018 Q1

In-house NMC 811 and NMC 900505 demonstrate high capacity

RESPONSE TO 2017 REVIEWERS' COMMENTS

No presentation given in 2017.

COLLABORATION AND COORDINATION WITH OTHER INSTITUTIONS

National Laboratories

- PNNL, INL and BNL
 - Pouch cell studies
 - Experimental input to system modeling
 - Synchroton: Ex-situ and operando synchrotron X-ray diffraction,
 - Neutron diffraction

• Academia

- UC San Diego, UT Austin and U. Washington:
 - Ni-rich NMC synthesis and characterization, doping/coating, insitu XRD
 - Experimental input to UW modeling

Industry

Working through NYBEST and NAATBaat to disseminate information

REMAINING CHALLENGES AND BARRIERS

• The Safety Trade-off: Energy vs Thermal Stability

- Increasing Ni content increases capacity
- Increasing Ni content decreases thermal stability
- Increasing Ni content increases capacity fade

Capacity Improvement

Need to extract > 220 Ah/kg to achieve 500 Wh/kg cells

Capacity Retention

- The surface must be stabilized against reaction with the electrolyte
- Metal dissolution must be eliminated
- Cracking and other mechanical degradation must be minimized

Thicker Electrodes needed to decrease inactive weight

- Will need improved ionic conductivity in the LiMO₂
- Will need enhanced electrode electronic conductivity

PROPOSED FUTURE WORK – KEYSTONE 1

- Determine attributes of NCA vs 811, e.g.
 - Gassing
 - Thermal stability (DSC et al)
 - Capacity fading
- Evaluate options for increasing conductivity
 - Ionic and electronic
- Evaluate options for improving Capacity Retention
 - Are gradient materials a possible approach?
 - Are such materials incompatible with Al doping?
 - Will they increase dissolution of Mn?
 - Determine role of doping in the lattice and/or surface coatings
- Provide technical support to Keystone 2 and 3

Any proposed future work is subject to change based on funding levels

SUMMARY

Baseline 622 NMC Material

- Well characterized
 - Optimum capacity for Li:M = 1:1
 - In-house and commercial material behave the same
- Achieved 300 Wh/kg 1st year goal

Recommended NMC 811 as 2018/2019 Battery 500 Cathode

- Higher capacity for a given charging voltage than 622
 - Al likely to be used as stabilizer
 - Achieved over 70 cycles
- U. Texas have synthesized kg quantities

Comparison of NMC with NCA

- Al homogenizes composition
 - NCA sensitive to traces of moisture
- Likely optimum compound is NMCA

TECHNICAL BACK-UP SLIDES

Technical Back-Up Slides

TECHNICAL BACK-UP SLIDES

None

